20 research outputs found

    Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that a small population of cells with unique self-renewal properties and malignant potential exists in solid tumors. Such "cancer stem cells" have been isolated by flow cytometry, followed by xenograft studies of their tumor-initiating properties. A frequently used sorting marker in these experiments is the cell surface protein CD133 (prominin-1). The aim of this work was to examine the distribution of CD133 in pancreatic exocrine cancer.</p> <p>Methods</p> <p>Fifty-one cases of pancreatic ductal adenocarcinomas were clinically and histopathologically evaluated, and immunohistochemically investigated for expression of CD133, cytokeratin 19 and chromogranin A. The results were interpreted on the background of CD133 expression in normal pancreas and other normal and malignant human tissues.</p> <p>Results</p> <p>CD133 positivity could not be related to a specific embryonic layer of organ origin and was seen mainly at the apical/endoluminal surface of non-squamous, glandular epithelia and of malignant cells in ductal arrangement. Cytoplasmic CD133 staining was observed in some non-epithelial malignancies. In the pancreas, we found CD133 expressed on the apical membrane of ductal cells. In a small subset of ductal cells and in cells in centroacinar position, we also observed expression in the cytoplasm. Pancreatic ductal adenocarcinomas showed a varying degree of apical cell surface CD133 expression, and cytoplasmic staining in a few tumor cells was noted. There was no correlation between the level of CD133 expression and patient survival.</p> <p>Conclusion</p> <p>Neither in the pancreas nor in the other investigated organs can CD133 membrane expression alone be a criterion for "stemness". However, there was an interesting difference in subcellular localization with a minor cell population in normal and malignant pancreatic tissue showing cytoplasmic expression. Moreover, since CD133 was expressed in shed ductal cells of pancreatic tumors and was found on the surface of tumor cells in vessels, this molecule may have a potential as clinical marker in patients suffering from pancreatic cancer.</p

    Expression of the transcription factor Hes3 in the mouse and human ocular surface, and in pterygium

    Get PDF
    Purpose: In this work we examined the presence of the neural stem cell biomarker Hairy and Enhancer of Split 3 (Hes3) in the anterior eye segment and in the aberrant growth condition of the conjunctiva pterygium. Further, we studied the response of Hes3 to irradiation. Materials and methods: Adult mouse and human corneoscleral junction and conjunctiva, as well as human pterygium were prepared for immunohistochemical detection of Hes3 and other markers. Total body irradiation was used to study the changes in the pattern of Hes3 expression. Results: The adult rodent and human eye as well as pterygium, contain a population of cells expressing Hes3. In the human eye, Hes3-expressing (Hes3+) cells are found predominantly in the subconjunctival space spanning over the limbus where they physically associate with blood vessels. The cytoarchitecture of Hes3 + cells is similar to those previously observed in the adult central nervous system. Furthermore, irradiation reduces the number of Hes3 + cells in the subconjunctival space. In contrast, irradiation strongly promotes the nuclear localization of Hes3 in the ciliary body epithelium. Conclusions: Our results suggest that a recently identified signal transduction pathway that regulates neural stem cells and glioblastoma cancer stem cells also operates in the ocular surface, ciliary body, and in pterygium

    Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity.

    No full text
    In zebrafish acerebellar (ace) embryos, because of a point mutation in fgf8, the isthmic constriction containing the midbrain-hindbrain boundary (MHB) organizer fails to form. The mutants lack cerebellar development by morphological criteria, and they appear to have an enlarged tectum, showing no obvious reduction in the tissue mass at the dorsal mesencephalic/metencephalic alar plate. To reveal the molecular identity of the tissues located at equivalent rostrocaudal positions along the neuraxis as the isthmic and cerebellar primordia in wild-types, we undertook a detailed analysis of ace embryos. In ace mutants, the appearance of forebrain and midbrain specific marker genes (otx2, dmbx1, wnt4) in the caudal tectal enlargement reveals a marked rostralized gene expression profile during early somitogenesis, followed by the lack of early and late cerebellar-specific gene expression (zath1/atoh1, gap43, tag1/cntn2, neurod, zebrin II). The Locus coeruleus (LC) derived from rostral rhombomere 1 is also absent in the mutants. A new interface between otx2 and epha4a suggests that the rostralization stops at the caudal part of rhombomere 1. The mesencephalic basal plate is also affected in the mutant embryos, as indicated by the caudal expansion of the diencephalic expression domains of epha4a, zash1b/ashb, gap43 and tag1/cntn2, and by the dramatic reduction of twhh expression. No marked differences are seen in cell proliferation and apoptotic patterns around the time the rostralization of gene expression becomes evident in the mutants. Therefore, locally distinct cell proliferation and cell death is unlikely to be the cause of the fate alteration of the isthmic and cerebellar primordia in the mutants. Dil cell-lineage labeling of isthmic primordial cells reveals that cells, at the location equivalent of the wild-type MHB, give rise to caudal tectum in ace embryos. This suggests that a caudalto-rostral transformation leads to the tectal expansion in the mutants. Fgf8-coated beads are able to rescue morphological MHB formation, and elicit the normal molecular identity of the isthmic and cerebellar primordium in ace embryos. Taken together, our analysis reveals that cells of the isthmic and cerebellar primordia acquire a more rostral, tectal identity in the absence of the functional MHB organizer signal Fgf8

    Focus on Molecules: Prominin-1 (CD133)

    No full text

    CD133 might be a pan marker of epithelial cells with dedifferentiation capacity

    No full text

    Robust expression of Prominin-2 all along the adult male reproductive system and urinary bladder

    No full text
    Although the male reproductive system seems to be enriched in transcripts encoding for both Prominin genes, little is known about their spatial distribution in distinct segments of this organ system. This is especially true for the less-characterized second Prominin paralogue, Prominin-2. The present study, therefore, mainly examines the expression of Prominin-2 in male mice and reveals the existence of some crucial differences in the tissue compartmentalization of the two Prominin paralogues in the testis, epididymis, seminal vesicle, prostate and urinary bladder. Our in situ hybridization analysis demonstrates that the major domains of overlapping expression between the two Prominin genes are those compartments that are derived ontogenetically from the epigonadal mesonephric tubules, i.e. ductuli efferentes, or from the Wolffian-tube/ductus mesonephricus, for instance the corpus epididymidis and vesicula seminalis. In contrast, the sinus urogenitalis derivative urinary bladder epithelium expresses exclusively Prominin-2, but not Prominin-1 (CD133). The testis expresses only Prominin-1, not Prominin-2. In human prostate, we finally demonstrate that the expression of Prominin-2 (transcript and protein) is highly enriched in cells located in the basal compartment of the glandular epithelium where only a minute population was recently reported to be Prominin-1 positive. Taken together our data indicate that, except for the gonad, Prominin-2 is widely and abundantly expressed along the epithelia of various segments of the adult male genitourinary tract

    Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic exocrine glands of adult mice

    No full text
    The major cephalic exocrine glands share many morphological and functional features and so can be simultaneously affected in certain autoimmune- and inherited disorders leading to glandular hypofunction. Phenotypic characterization of these exocrine glands is not only an interesting biological issue, but might also be of considerable clinical relevance. The major salivary and lacrimal glands might therefore be potential subjects of future cell-based regenerative/tissue engineering therapeutic approaches. In the present study, we described the expression of the stem and progenitor cell marker Prominin-1 and those of its paralogue, Prominin-2, in the three pairs of major salivary glands, i.e., submandibular-, major sublingual-, and parotid glands in adult mice. We have also documented their expression in the extraorbital lacrimal and meibomian glands (Glandulae tarsales) of the eyelid (Palpebra). Our analysis revealed that murine Prominin-1 and Prominin-2 were differentially expressed in these major cephalic exocrine organs. Expression of Prominin-1 was found to be associated with the duct system, while Prominin-2 expression was mostly, but not exclusively, found in the acinar compartment of these organs with marked differences among the various glands. Finally, we report that Prominin-2, like Prominin-1, is released into the human saliva associated with small membrane particles holding the potential for future diagnostic applications

    The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia

    No full text
    Human prominin-1 (CD133) is expressed by various stem and progenitor cells originating from diverse sources. In addition to stem cells, its mouse ortholog is expressed in a broad range of adult epithelial cells, where it is selectively concentrated in their apical domain. The lack of detection of prominin-1 in adult human epithelia might be explained, at least in part, by the specificity of the widely used AC133 antibody, which recognizes an epitope that seems dependent on glycosylation. Here we decided to re-examine its expression in adult human tissues, particularly in glandular epithelia, using a novel monoclonal antibody (80B258) generated against the human prominin-1 polypeptide. In examined tissues, we observed 80B258 immunoreactivity at the apical or apicolateral membranes of polarized cells. For instance, we found expression in secretory serous and mucous cells as well as intercalated ducts of the large salivary and lacrimal glands. In sweat glands including the gland of Moll, 80B258 immunoreactivity was found in the secretory (eccrine and apocrine glands) and duct (eccrine glands) portion. In the liver, 80B258 immunoreactivity was identified in the canals of Hering, bile ductules, and small interlobular bile ducts. In the uterus, we detected 80B258 immunoreactivity in endometrial and cervical glands. Together these data show that the overall expression of human prominin-1 is beyond the rare primitive cells, and it seems to be a general marker of apical or apicolateral membrane of glandular epithelia. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials
    corecore